Volume 14, Issue 9

Spatio-temporal Variations and Trends of Aerosol Optical Depth over Guinea, Guinea-Bissau, and Senegal Based on VIIRS Satellite Validated with AERONET (2012–2024)

Author

* Sa’adu B, U M. Gana, Yusuf S A.

Abstract

Abstract:

This study aimed at using Visible Infrared Imaging Radiometer (VIIR) to investigating the spatial and temporal variation of aerosols over West African sub- region and its deriving factors play a vital role for assessing the impacts of aerosols on air quality, health and environment. Aerosol optical depth is a key variable and important indicator as it measures the aerosol loading in the atmosphere. This study examined the spatiotemporal variations and trends in aerosol optical depth (AOD) at 550nm wavelength over West African sub-region Guinea (GU), Guinea Bissau (GB) and Senegal (SE) from 2012 to 2024.The daily AOD data were retrieved from Visible Infrared Imaging radiometer (VIIR) satellite to evaluate monthly, seasonal, annual spatiotemporal variation and aerosol modal characteristics and the AERONET data were used for validation. The results shows that, GU, GB and SE has the highest AOD value in spring (0.54) (0.55) (0.56) and the least in autumn (0.30) (0.31) (0.33) respectively. The Annual mean AOD fluctuate considerably with the higher AOD value are (0.47) & (0.45) in 2015 and (0.48) in 2017, the least AOD value are (0.36) (0.37) and (0.38) in 2013 for GU, SE and GB respectively. Additionally, month of June exhibit a higher AOD value of (0.84) and least in January (0.25) for SE, February (0.58) and August (0.25) for GU and January (0.67) and October (0.27) for GB respectively. Scatter plot of AOD and AE were used to characterized the aerosols modal, Biomass burning (BB),Sea salt(SS), Saharan dust (SD) and Vehicular emission(VE).GU (fine mode: 1.2-1.8, coarse mode: 0.51-1.2, Mixed mode: 0-0.51), GB (fine mode: 1.1-1.8, coarse mode: 0.-0.5, Mixed mode: 0.5-1.1), and SE ((fine mode: 1.0-1.8, coarse mode: 0.3-1.0, Mixed mode: 0-0.3). These findings underscore the need for rigorous air quality regulations and emission control measures in West Africa coastal region. 

References

  1. Aklesso M, Kumar KR, Bu L, Boiyo R (2018) Analysis of spatialtemporal heterogeneity in remotely sensed aerosol properties observed during 2005–2015 over three countries along the Gulf of Guinea Coast in Southern West Africa. Atmos Environ 182:313–324.
  2. Ali, M. A., Nichol, J. E., Bilal, M., Qiu, Z., Mazhar, U., Wahiduzzaman, M., et al. (2020). Classification of aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. 241, 117785. doi:10.1016/j.atmosenv.2020.117785
  3.  Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75.
  4. Bencherif, H.; Bounhir, A.; Bègue, N.; Millet, T.; Benkhaldoun, Z.; Lamy, K.; Portafaix, T.; Gadouali, F. (2022) Aerosol Distributions and Sahara Dust Transport in Southern Morocco, from Ground-Based and Satellite Observations. Remote Sens. 2022, 14, 2454.
  5. Bibi H, Alam K, Chishtie F et al (2015) Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos Environ 111:113–126. 
  6. Boiyo R, Kumar KR, Zhao T (2018) Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: source identification, modification and aerosol type discrimination. Atmos Environ 177:234–252 
  7. Boiyo R, Kumar KR, Zhao T (2018) Spatial variations and trends in AOD climatology over East Africa during 2002–2016: a comparative study using three satellite data sets. Int J Climatol 38:e1221–e1240 
  8. Boiyo R, Kumar KR, Zhao T, Bao Y (2017) Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001–2015. Atmos Environ 152:298–313. 
  9. Boiyo R, Kumar KR, Zhao T, Guo J (2019) A 10-year record of aerosol optical properties and radiative forcing over three environmentally distinct AERONET sites in Kenya, East Africa. J Geophys Res Atmos 124:1596–1617. 
  10. Caido, N.G.; Ong, P.M.; Rempillo, O.; Galvez, M.C.; Vallar, E.(2022) Spatiotemporal Analysis of MODIS Aerosol Optical Depth Data in the Philippines from 2010 to 2020. Atmosphere, 13, 939.
  11. Chau, K.; Franklin, M.; Lee, H.; Garay, M.; Kalashnikova, O. (2021) Temporal and Spatial Autocorrelation as Determinants of Regional Aod-Pm2.5 Model Performance in the Middle East. Remote Sens.  13, 3790. 
  12. de Graaf M, Tilstra LG, Aben I, Stammes P (2010) Satellite observations of the seasonal cycles of absorbing aerosols in Africa related to the monsoon rainfall, 1995–2008. Atmos Environ 44:1274– 1283. https://doi.org/10.1016/j.atmosenv.2009.12.038
  13. Eck, T.F.; Holben, B.; Reid, J.; Dubovik, O.; Smirnov, A.; O’neill, N.; Slutsker, I.; Kinne, S. (199) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349.
  14. Ettehadi Osgouei, P.; Roberts, G.; Kaya, S.; Bilal, M.; Dash, J.; Sertel, E. (2022) Evaluation and Comparison of MODIS and VIIRS Aerosol Optical Depth (AOD) Products over Regions in the Eastern Mediterranean and the Black Sea. Atmos. Environ. 268, 118784.
  15. Gao, L., Li, J., Chen, L., Zhang, L., and Heidinger, A. K. (2016). Retrieval and validation of atmospheric aerosol optical depth from AVHRR over China. IEEE Trans. Geoscience Remote Sens. 54 (11), 6280–6291. doi:10.1109/tgrs.2016.2574756
  16. Gouda, K.C.; Gogeri, I.; ThippaReddy, A.S. (2022) Assessment of Aerosol Optical Depth over Indian Subcontinent d uring COVID-19Lockdown (March–May 2020). Environ. Monit. Assess, 194, 195.
  17. Hersey SP, Garland RM, Crosbie E et al (2015) An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmos Chem Phys 15:4259–4278. https://doi.org/10.5194/acp-15-4259-2015 Res Atmos 124:1596–1617. 
  18. Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J. P., Setzer, A., et al. (1998). AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66 (1), 1–16. doi:10.1016/S0034-4257(98) 00031-5
  19. Ichoku, C., Chu, D. A., Mattoo, S., Kaufman, Y. J., Remer, L. A., Tanré, D., et al. (2002). A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 29 (12), MOD1–1. doi:10.1029/2001GL013206
  20. Kahn, R. A., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M. A., Diner, D. J., et al. (2009). MISR aerosol product attributes and statistical comparisons with MODIS. IEEE Trans. Geoscience Remote Sens. 47 (12), 4095–4114. doi:10.1109/TGRS.2009.2023115
  21. Kaufman, Y.J.; Tanré, D.; Boucher, O. (2002) A Satellite View of Aerosols in the Climate System. Nature 419, 215–22
  22. Kumar KR, Sivakumar V, Reddy RR et al (2013) Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect. Sci Total Environ 461–462:397–408. https://doi.org/10.1016/j.scitotenv. 2013.04.095
  23. Kumar KR, Sivakumar V, Yin Y et al (2014) Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos Environ 95:400–408. https://doi.org/10.1016/j.atmosenv.2014.07. 001
  24. Levy, R. C., Remer, L. A., and Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 112 (D13). doi:10.1029/ 2006JD007815
  25. Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., et al. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 10 (21), 10399–10420. doi:10.5194/acp- 10-10399-2010
  26. Liu, H., Remer, L. A., Huang, J., Huang, H. C., Kondragunta, S., Laszlo, I., et al. (2014).  Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. J. Geophys. Res. Atmos. 119 (7), 3942–3962. doi:10.1002/2013JD020360
  27. Logothetis, S. A., Salamalikis, V., and Kazantzidis, A. (2020). Aerosol classification in europe, Middle East, north africa and arabian peninsula based on AERONET version 3. Atmos. Res. 239, 104893. doi:10.1016/j.atmosres.2020.104893
  28. Nyasulu M, Haque MM, Boiyo R et al (2020) Seasonal climatology and relationship between AOD and cloud properties inferred from the MODIS over Malawi, Southeast Africa. Atmos Pollut Res 11:1933–1952. https://doi.org/10.1016/j.apr.2020.07.023
  29. Ogunjobi, K. O., and Awoleye, P. O. (2019). Intercomparison and validation of satellite and ground-based aerosol optical depth (AOD) retrievals over six AERONET sites in West Africa. Aerosol Sci. Eng. 3 (1), 32–47. doi:10.1007/ s41810-019-00040-7
  30. Payra S, Sharma A, Mishra MK and Verma S (2023), Performance evaluation of MODIS and VIIRS satellite AOD products over the Indian sub-continent. Front. Environ. Sci. 11:1158641. doi: 10.3389/fenvs.2023.1158641
  31. Qi YL, Ge JM, Huang JP (2013) Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin Sci Bull 58:2497–2506. https://doi.org/10.1007/s11434-013-5678-5
  32. Torabi, S.E.; Amin, M.; Phairuang,W.; Lee, H.-M.; Hata, M.; Furuuchi, M.(2024) High-Resolution Characterization of Aerosol Optical Depth and Its Correlation with Meteorological Factors in Afghanistan. Atmosphere 15, 849. https:// doi.org/10.3390/atmos15070849
  33. Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., et al. (2007). Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 112 (D24), D24S47. doi:10.1029/ 2007JD008809
  34. Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., et al. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health  Perspect. 118 (6), 847–855. doi:10.1289/ehp.0901623
  35. Wu, S.; Xue, Y.; Sun, Y.; Jin,C.; Zhang, M.; Jiang, X.; Lu, X. (2023) Spatial and Temporal Variation of Aerosol Optical Depth in Huaihai Economic Zone from 1982 to 2021. Atmosphere, 14, 822. https://doi.org/10.3390/atmos14050822
  36. Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J. (2009). Attribution of aerosol light absorption to black carbon, Brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE. Atmos. Chem. Phys. 9 (6), 2035–2050. doi:10.5194/acp-9-2035-2009
     

DOI

https://doi.org/10.62226/ijarst20252582

PAGES : 1653 | 1662 VIEWS | 0 DOWNLOADS


Download Full Article

* Sa’adu B, U M. Gana, Yusuf S A. | Spatio-temporal Variations and Trends of Aerosol Optical Depth over Guinea, Guinea-Bissau, and Senegal Based on VIIRS Satellite Validated with AERONET (2012–2024) | DOI : https://doi.org/10.62226/ijarst20252582

Journal Frequency: ISSN 2320-1126, Monthly
Paper Submission: Throughout the month
Acceptance Notification: Within 6 days
Subject Areas: Engineering, Science & Technology
Publishing Model: Open Access
Publication Fee: USD 60  USD 50
Publication Impact Factor: 6.76
Certificate Delivery: Digital

Publish your research with IJARST and engage with global scientific minds