Volume 14, Issue 9

Influence of the Fibre-Matrix Interface on the Matrix Crack Development in Carbon-Epoxy Cross-Ply Laminates: Experimental and Numerical Validation

Author

Panagiotis J. Charitidis

Abstract

Abstract:

Carbon-fibre-reinforced composites rely heavily on the fibre-matrix interface for effective load transfer and damage tolerance. This study investigates how varying levels of fibre surface treatment influence the mechanical behaviour of carbon-epoxy cross- ply laminates (02/902)s. Tensile tests combined with finite element modelling in COMSOL Multiphysics examined stiffness, strength, strain to failure, and matrix crack evolution. Results show that moderate treatment (≈10% of standard duration) optimizes interfacial bonding, improving stiffness and strength while maintaining ductility. Excessive treatment increases brittleness, leading to rapid crack propagation and reduced energy absorption. The FEM model, incorporating cohesive zone and progressive damage laws, showed strong correlation with experiments (R² > 0.975). These findings highlight that balanced surface treatment is critical: insufficient bonding weakens composites, while over-strengthening eliminates beneficial energy dissipation.

Reference:

1.    Vogtmann, J., Klingler, A., Rief, T. and Gurka, M., 2021. 3D X-ray Microscopy as a Tool for in Depth Analysis of the Interfacial Interaction between a Single Carbon Fiber and an Epoxy Matrix after Mechanical Loading. Journal of Composites Science, 5(5), pp.121. https://doi.org/10.3390/jcs5050121
2.    Drzal, L.T. and Madhukar, M., 1993. Fibre-matrix adhesion and its relationship to composite mechanical properties. Journal of Materials Science, 28, pp.569–610. https://doi.org/10.1007/BF01151234
3.    Jesson, D.A. and Watts, J.F., 2012. The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification. Polymer Reviews, 52, pp.321–354. https://doi.org/10.1080/15583724.2012.710288
4.    Abrate, S., 1991. Matrix cracking in laminated composites: A review. Composites Engineering, 1(6), pp.337-353. https://doi.org/10.1016/0961-9526(91)90039-U
5.    Chalot, A., Michel, L. and Ferrier, E., 2019. Experimental Study of External Bonded CFRP-Concrete Interface under Low Cycle Fatigue Loading. Composites Part B: Engineering, 177, pp.107255.https://doi.org/10.1016/j.compositesb.2019.107255
6.    Lee, T., Jeong, S., Woo, U., Choi, H. and Jung, D., 2023. Experimental Evaluation of Shape Memory Alloy Retrofitting Effect for Circular Concrete Column Using Ultrasonic Pulse Velocity. International Journal of Concrete Structures and Materials, 17, pp.13. https://doi.org/10.1186/s40069-022-00574-0
7.    Khan, S.H. and Sharma, A.P., 2018. Progressive damage modeling and interface delamination of cross-ply laminates subjected to low-velocity impact. Journal of Strain Analysis for Engineering Design, 53, pp.435–445.https://doi.org/10.1177/0309324718780598
8.    Behnia, S., Daghigh, V., Nikbin, K., Fereidoon, A. and Ghorbani, J., 2016. Influence of stacking sequence and notch angle on the Charpy impact behavior of hybrid composites. Mechanics of Composite Materials, 52, pp.489–496.https://doi.org/10.1007/s11029-016-9599-7
9.    Broutman, L.J., 1966. Glass-resin joint strength and their effect on failure mechanisms in reinforced plastics. Polymer Engineering and Science, 6, pp.263–272.https://doi.org/10.1002/pen.760060316
10.    Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X. and Yu, L., 2012. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Applied Materials & Interfaces, 4, pp.1543–1552.https://doi.org/10.1021/am201757v
11.    Riaño, L., Chailan, J.-F. and Joliff, Y., 2021. Evolution of effective mechanical and interphase properties during natural ageing of glassfibre/epoxy composites using micromechanical approach. Composite Structures, 258, pp.113399. https://doi.org/10.1016/j.compstruct.2020.113399
12.    Kumagai, Y., Onodera, S., Salviato, M. and Okabe, T., 2020. Multiscale analysis and experimental validation of crack initiation in quasi-isotropic laminates. International Journal of Solids and Structures, 193–194, pp.172–191. https://doi.org/10.1016/j.ijsolstr.2020.02.010
13.    Sun, Q. et al., 2019. Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model. Composite Science and Technology, 172, pp.81–95. https://doi.org/10.1016/j.compscitech.2019.01.012
14.    Mantič, V. and García, I.G., 2012. Crack onset and growth at the fibre–matrix interface under a remote biaxial transverse load. Application of a coupled stress and energy criterion. International Journal of Solids and Structures, 49, pp.2273–2290. https://doi.org/10.1016/j.ijsolstr.2012.04.023
15.    Vaughan, T.J. and McCarthy, C.T., 2011. Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Composite Science and Technology, 71, pp.388–396.https://doi.org/10.1016/J.COMPSCITECH.2010.12.006
16.    Kashtalyan, M.Y. and Soutis, C., 2002. Mechanisms of Internal Damage and Their Effect on the Behavior and Properties of Cross-Ply Composite Laminates. International Applied Mechanics, 38, pp.641–657. https://doi.org/10.1023/A:1020456726805
17.    Mallick, P.K., 1993. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. 2nd ed. Marcel Dekker, New York. https://doi.org/10.1201/9781420005981
18.    Swain, R.E., Elmore, J.S., Lesko, J.J. and Reifsnider, K.L., The Role of Fiber, Matrix, and Interphase in the Compressive Static and Fatigue Behavior of Polymeric Matrix Composite Laminates. Book Chapter. https://doi.org/10.1520/STP24340S
19.    Timmerman, J.F., Hayes, B.S. and Seferis, J.C., 2003. Cryogenic Microcracking of Carbon Fiber/Epoxy Composites: Influences of Fiber-Matrix Adhesion. Journal of Composite Materials, 37(21), pp.1939–1950. https://doi.org/10.1177/002199803036281
20.    Goan, J.C. and Prosen, S.P., 1969. Interfaces in Composites. ASTM STP 452, pp.3–26.  https://doi.org/10.1002/9783527603978.mst0152
21.    Drzal, L.T., Rich, M.J. and Koenig, M.E., 1983. Adhesion of Graphite Fibers to Epoxy Matrices: II. The Effect of Fiber Finish. Journal of Adhesion, 16(2), pp.133–152.https://doi.org/10.1080/00218468308074911
22.    Schürmann, H., 2005. Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin/Heidelberg. https://doi.org/110.1007/b137636
23.    Madhukar, M.S. and Drzal, L.T., 1991. Fiber-Matrix Adhesion and Its Effect on Composite Mechanical Properties: I. Inplane and Interlaminar Shear Behavior of Graphite/Epoxy Composites. Journal of Composite Materials, 25, pp.932 https://doi.org/10.1177/002199839202600701
24.    Remaoun, D. and Boutaous, A., 2011. Thermomechanical stress in the evolution of shear of fiber-matrix interface composite material. Materials Science and Applications, 2, pp.399–403. https://doi.org/10.4236/msa.2011.25051
25.    Singh, A.K. and Gupta, P.S., 2018. Evaluation of mechanical and erosive wear characteristics of TiO2 and ZnO filled bi-directional E-glass fiber based vinyl ester composites. Silicon, 10, pp.309–327. https://doi.org/10.1007/s12633-016-9447-3
26.    Almeida, J.H.S., Amico, S.C., Botelho, E.C. and Amado, F.D.R., 2013. Hybridization Effect on the Mechanical Properties of Curaua/glass Fiber Composites. Composites Part B: Engineering, 55, pp.492–497. https://doi.org/10.1016/j.compositesb.2013.07.014
27.    Zaer-Miri, S. and Khosravi, H., 2019. Assessment of the wear behavior and interlaminar shear properties of modified nano-TiO2/jute fiber/epoxy multiscale composites. Journal of Industrial Textiles, 51(7), pp.1084–1099. https://doi.org/10.1177/1528083719893718
28.    Graupner, N. and Müssig, J., 2022. Interfacial and Interlaminar Shear Strength of Unidirectional Viscose Fibre-Reinforced Epoxy Composites—an Overview of the Comparability of Results Obtained by Different Test Methods. Frontiers in Materials, 9, pp.709845. https://doi.org/10.3389/fmats.2022.709845
29.    Shoya, R., Matsuo, T., Takahashi, K., Fujimura, N. and Nakamura, T., 2021. In-situ Tensile and Fatigue Testing for Detection of Interfacial Debonding between Carbon Fibers and Epoxy Matrix by Synchrotron Radiation X-ray Nano-CT. Journal of the Japan Society for Composite Materials, 47(5), pp.186–193. https://doi.org/10.6089/jscm.47.186
30.    Takahashi, K., Shoya, R., Matsuo, T., Sato, W., Nakamura, T., Takeuchi, A., Uesugi, M. and Uesugi, K., 2022. X-ray nanoimaging of a transversely embedded carbon fiber in epoxy matrix under static and cyclic loads. Scientific Reports, 12(1), pp.1–12. https://doi.org/10.1038/s41598-022-12724-1
31.    Watanabe, T., Takeichi, Y., Niwa, Y., Hojo, M. and Kimura, M., 2020. Nanoscale crack initiation and propagation in carbon fiber/epoxy composites using synchrotron: 3D image data. Data Brief, 31, pp.105894. https://doi.org/10.1016/j.dib.2020.105894
32.    Singh, D.K., Vaidya, A., Thomas, V., Theodore, M., Kore, S. and Vaidya, U., 2020. Finite Element Modeling of the Fiber-Matrix Interface in Polymer Composites. Journal of Composites Science, 4(2), pp.58. https://doi.org/10.3390/jcs4020058
33.    Sabuncuoglu, B. and Lomov, S.V., 2020. Micro-scale numerical study of fiber/matrix debonding in steel fiber composites. Journal of Engineered Fibers and Fabrics, 15. https://doi.org/10.1177/1558925020910726
34.    Thiagarajan, P., Sain, T. and Ghosh, S., Bayesian Calibration and Uncertainty Quantification of a Rate-dependent Cohesive Zone Model for Polymer Interfaces. Computational Engineering, Finance, and Science, arXiv:2311.07768v1. https://doi.org/10.48550/arXiv.2311.07768
35.    Ivens, J., Wevers, M., Verpoest, I. and De Meester, P., 1989. Influence of the Fibre-Matrix Interface On the Matrix Crack Development in Carbon-Epoxy Cross-Ply Laminates. In: Bunsell, A.R., Lamicq, P., Massiah, A. (eds) Developments in the Science and Technology of Composite Materials. Springer, Dordrecht, pp.64. https://doi.org/10.1007/978-94-009-1123-9_64
36.    COMSOL Multiphysics® v. 6.3, COMSOL AB, Stockholm, Sweden. www.comsol.com
37.    Matzenmiller, A., Lubliner, J. and Taylor, R.L., 1995. A constitutive model for anisotropic damage in fiber-composites. Mechanics of Materials, 20, pp.125–152. https://doi.org/10.1016/0167-6636(94)00053-0
38.    Chihaoui, B., Serra-Parareda, F., Tarrés, Q., Espinach, F.X., Boufi, S. and Delgado-Aguilar, M., 2020. Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young’s Modulus. Polymers, 12(8), pp.1693. https://doi.org/10.3390/polym12081693
39.    Fallahi, H., Kaynan, O. and Asadi, A., 2023. Insights into the effect of fiber–matrix interphase physiochemical-mechanical properties on delamination resistance and fracture toughness of hybrid composites. Composites Part A: Applied Science and Manufacturing, 166, pp.107390. https://doi.org/10.1016/j.compositesa.2022.107390
40.    Goda, I., Padayodi, E. and Raoelison, R.N., 2024. Enhancing fiber/matrix interface adhesion in polymer composites: Mechanical characterization methods and progress in interface modification. Journal of Composite Materials, 58(29), pp.3077–3110. https://doi.org/10.1177/00219983241283958
41.    Lewis, C., Yavuz, B.O., Longana, M.L., Belnoue, J.P.-H., Ramakrishnan, K.R., Ward, C. and Hamerton, I., 2024. A Review on the Modelling of Aligned Discontinuous Fibre Composites. Journal of Composites Science, 8(8), pp.318. https://doi.org/10.3390/jcs8080318
42.    Ahmadvash Aghbash, S., Verpoest, I., Swolfs, Y. and Mehdikhani, M., 2023. Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review. International Materials Reviews, 68(8), pp.1245–1319. https://doi.org/10.1080/09506608.2023.2265701
43.    Trimiño, L.F. and Cronin, D.S., 2016. Evaluation of Numerical Methods to Model Structural Adhesive Response and Failure in Tension and Shear Loading. Journal of Dynamic Behavior of Materials, 2, pp.122–137. https://doi.org/10.1007/s40870-016-0045-7
44.    Mubarak, A. and Joshi, S., Energy Absorption Characteristics of Interface Modified GFRP Laminates under Low Velocity Impact. Advanced Materials Research, 626, pp.589–593. https://doi.org/10.4028/www.scientific.net/AMR.626.589
45.    Tan, W. and Martínez-Pañeda, E., 2021. Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites. Composites Science and Technology, 202, pp.108539. https://doi.org/10.1016/j.compscitech.2020.108539
46.    Qiao, P. and Chen, Y., 2008. Cohesive fracture simulation and failure modes of FRP–concrete bonded interfaces. Theoretical and Applied Fracture Mechanics, 49(2), pp.213–225. https://doi.org/10.1016/j.tafmec.2007.11.005
47.    Holmes, G.A., Hunston, D.L., McDonough, W.G. and Peterson, R.C., A New Methodology for Determining Interfacial Shear Strength in Single Fiber Composites. SAMPE-ACCE-DOE-SPE (Reproduction) Midwest Advanced Materials and Processing Conferences Session: Durability, pp.321–331.
48.    Mantič, V., Távara, L., Blázquez, A., Graciani, E. and París, F., Application of a linear elastic-brittle interface model to the crack initiation and propagation at fibre-matrix interface under biaxial transverse loads. arXiv:1311.4596. https://doi.org/10.48550/arXiv.1311.4596
49.    Hillberry, B.M. and Johnson, W.S., 1990. Matrix Fatigue Crack Development In A Nontched Continuous Fiber SCS-6/Ti-15-3 Composite. NASA Technical Memorandum, 102751.
50.    Zhu, Y., Zhang, Y. and Xiang, L., 2025. Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method. Buildings, 15(10), pp.1717. https://doi.org/10.3390/buildings15101717
51.    Drvoderic, M., Pletz, M. and Schuecker, C., 2022. Modeling Stiffness Degradation of Fiber-Reinforced Polymers Based on Crack Densities Observed in Off-Axis Plies. Journal of Composites Science, 6(1), pp.10. https://doi.org/10.3390/jcs6010010
52.    Shen, B. and Paulino, G.H., 2011. Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique. Experimental Mechanics, 51, pp.143–163. https://doi.org/10.1007/s11340-010-9342-6
53.    Wan, L., Ismail, Y., Sheng, Y., Yang, D. and Ye, J., 2023. A review on micromechanical modelling of progressive failure in unidirectional fibre-reinforced composites. Composites Part C: Open Access. https://doi.org/10.1016/j.jcomc.2023.100348
54.    Nagaraja, S., Elhaddad, M., Ambati, M. et al., 2019. Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Computational Mechanics, 63, pp.1283–1300. https://doi.org/10.1007/s00466-018-1649-7
55.    Chamis, C.C., 1972. Mechanics Of Load Transfer at The Fiber/Matrix Interface. NASA Technical Memorandum, Washington, D.C., February.
56.    Yu, Y., Zheng, X., Li, P. and Xiao, J., Progressive failure simulation of composite materials using the anisotropic phase field method. Materials Science. https://doi.org/10.48550/arXiv.2212.01969
57.    Fan, C., Shan, Z., Zou, G. et al., 2021. Interfacial Bonding Mechanism and Mechanical Performance of Continuous Fiber Reinforced Composites in Additive Manufacturing. Chinese Journal of Mechanical Engineering, 34, pp.21. https://doi.org/10.1186/s10033-021-00538-7
58.    Lei, Z., Li, X., Qin, F. and Qiu, W., 2014. Interfacial micromechanics in fibrous composites: design, evaluation, and models. Scientific World Journal, 2014, pp.282436. https://doi.org/10.1155/2014/282436
59.    Motta de Castro, E., Tabei, A., Cline, D.B.H. et al., 2025. New insights in understanding the fiber-matrix interface and its reinforcement behavior using single fiber fragmentation data. Advanced Composites and Hybrid Materials, 8(5). https://doi.org/10.1007/s42114-024-01054-7

DOI

https://doi.org/10.62226/ijarst20252580

PAGES : 1637 | 1646 VIEWS | 0 DOWNLOADS


Download Full Article

Panagiotis J. Charitidis | Influence of the Fibre-Matrix Interface on the Matrix Crack Development in Carbon-Epoxy Cross-Ply Laminates: Experimental and Numerical Validation | DOI : https://doi.org/10.62226/ijarst20252580

Journal Frequency: ISSN 2320-1126, Monthly
Paper Submission: Throughout the month
Acceptance Notification: Within 6 days
Subject Areas: Engineering, Science & Technology
Publishing Model: Open Access
Publication Fee: USD 60  USD 50
Publication Impact Factor: 6.76
Certificate Delivery: Digital

Publish your research with IJARST and engage with global scientific minds